

TOPOLOGY - III, EXERCISE SHEET 13

Exercise 1. *Cellular homology of some important examples.*

Using the CW complex structures you came up with for the following spaces from exercise 1 of sheet 11, compute the corresponding cellular complexes and cellular homology groups:

- (1) S^n .
- (2) $(T^2)^{\#n}$
- (3) $(\mathbb{RP}^2)^{\#n}$
- (4) \mathbb{RP}^n
- (5) \mathbb{CP}^n .
- (6) Connected graphs, in terms of number of edges and vertices.

Exercise 2. *Homology of complex Grassmannians and Young Diagrams.*

The goal of this exercise is to demonstrate how the homology of complex Grassmannians can be calculated using the combinatorics of Young diagrams.

- (1) Recall that the Grassmannian of k -planes in \mathbb{C}^n , denoted by $Gr(k, n)$ is the space parameterising dimension k subspaces of the complex vector space \mathbb{C}^n . Review from the last exercise sheet that we endowed $Gr(k, n)$ with a topology by realising it as a quotient of the space $V_k(\mathbb{C}^n)$.
Show that we can equivalently realise $Gr(k, n)$ as the quotient

$$Mat_{k \times n}^{\circ}(\mathbb{C})/GL_k(\mathbb{C}).$$

Where $Mat_{k \times n}^{\circ}(\mathbb{C})$ denotes the open subset of $k \times n$ complex matrices consisting of full-rank matrices and is acted on by $GL_k(\mathbb{C})$ via left multiplication or equivalently via row operations.

- (2) Recall that a Schubert symbol is a sequence $\sigma = 1 \leq j_1 < j_2 < \dots < j_k \leq n$. To such a Schubert symbol we associate the subset $W_{\sigma}^{\circ} \subseteq Mat_{k \times n}^{\circ}(\mathbb{C})$ consisting of those matrices

whose j_m -th column is the column matrix $\begin{bmatrix} 0 \\ \cdot \\ 1 \\ 0 \\ \cdot \\ 0 \end{bmatrix}$, with the 1 in the $k - m + 1$ -th row and

all the matrix entries in the $k - m + 1$ -th row, which are to the right of the 1 are equal to zero, ie. That is the $(k - m + 1, l)$ -th entry of the matrix is zero for $l > j_m$. As an example, for $Gr(3, 5)$ and the Schubert symbol $\sigma = (2, 4, 5)$ we have that W_{σ}° consists of the matrices of the form

$$\begin{pmatrix} * & 0 & * & 0 & 1 \\ * & 0 & * & 1 & 0 \\ * & 1 & 0 & 0 & 0. \end{pmatrix}.$$

Where the * denote arbitrary complex numbers. Denote by X_σ^0 the image of W_σ^0 in $Gr(k, n) = Mat_{k \times n}^0(\mathbb{C})/GL_k(\mathbb{C})$.

- (a) Show that X_σ^0 is equal to the Schubert cell $e(\sigma)$ defined in sheet 12.
- (b) Observe that the $\dim X_\sigma^0 = 2(j_1 + \dots + j_k - k(k+1)/2)$, that is the number of *.
- (c) List all Schubert symbols and the corresponding Schubert cells in terms of their matrix representation for $Gr(2, 4)$ and $Gr(3, 5)$.

(3) Given a positive integer j , a partition of j is a sequence $l_1 \geq l_2 \geq \dots \geq l_r$ of positive integers such that $\sum_{i=1}^r l_i = j$. To the data of a partition of j we can associate a so-called Young Diagram, an arrangement of j boxes such that the number of boxes in the i -th row is l_i . For example the young diagram corresponding to the partition $(2, 2, 1)$ of 5 is given by

Note that to a Schubert cell, one can also associate a young diagram by counting the number of * in each row of the matrix representation of the Schubert cell. For example the above Young diagram is associated to the Schubert cell in $Gr(3, 5)$ defined by the Schubert symbol $(2, 4, 5)$.

It was shown in the last exercise sheet that the Schubert cells can be used to define a CW space structure on $Gr(k, n)$. Since the Schubert cells are all of even dimension, we have that the boundary maps of the cellular complex for $Gr(k, n)$ are all zero and hence $H^{2j+1}(Gr(k, n)) = 0$ and $H^{2j}(Gr(k, n))$ is equal to the number of Schubert cells of dimension $2j$.

Show that $H^{2j}(Gr(k, n))$ is equal to the number of young diagrams of size j in a $k \times (n-k)$ grid.

Using this, compute the homology groups of the following:

- (a) $Gr(1, 4)$.
- (b) $Gr(3, 4)$.
- (c) $Gr(2, 4)$.
- (d) $Gr(3, 5)$.
- (e) $Gr(2, 6)$.